[3]

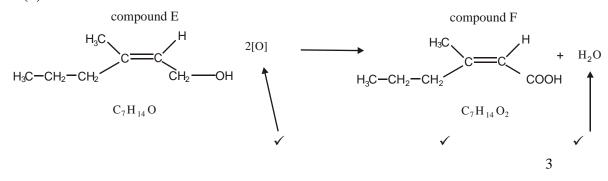
[5]

- (i) Any two realistic fragments,
 e.g. CH₃⁺: 15; C₂H₅⁺: 29; C₃H₇⁺: 43; C₄H₉⁺: 57; OH⁺: 17, etc. (1) (1)
 Do not penalise missing charge.
 (ii) breathalysers/monitoring of air pollution, MOT emission testing, etc. (1)
- 2. mole ratio = 88.89/12 : 11.1/1 = 7.41 : 11.1 (1) empirical formula = C_2H_3 (1) relative mass of $C_2H_3 = 27$. $M_r = 2 \times 29$ so molecular formula = C4H6 (1) X reacts with 2 mol H_2 so there are 2 double bonds (1) Possible structure = 1,3-butadiene /

Possible structure = 1,3-butadiene (1)

3. (a) (i) H^+ 1 $Cr_2O_7^{2-}$ 1

- (ii) Orange to green/black/blue 1
- (b) (i) contains a C=O/aldehyde, ketone, carboxylic acid and ester/ 1 carbonyl/carbonyl in an aldehyde
 - (ii) does **not** contain a O–H/ (hydrogen bonded in a) carboxylic acid
 - (iii) distillation (no mark) **because** distillation allows loss of volatile components /removes butanal from oxidising mixture prevents formation of RCOOH/ partial oxidation would be achieved or reverse argument for reflux not being used in that reflux prevents loss of volatile components hence complete oxidation would be achieved/RCOOH would be formed


[7]

4. (i) $H^+ \checkmark Cr_2O_7^{2-}$

2

1

(ii)

(iii) carboxylic acid would have an absorption between $1680-1750~\text{cm}^{-1}/1700~\text{cm}^{-1}$ or $2500-3300~\text{cm}^{-1}$.

[6]

- 5. (a) (i) (volatile components) can escape/distil out

 ethanal is most volatile/b pt less than 60°C/partial oxidation

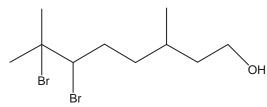
 1

 (ii) (volatile components) cannot escape/ refluxed

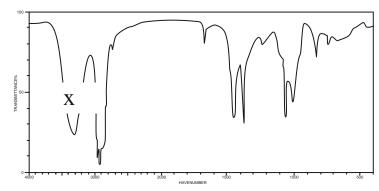
 1
 - complete oxidation will be achieved/oxidised to the acid
 - (b) $C_2H_5OH + 2[O] \rightarrow CH_3COOH + H_2O$ $(CH_3COOH + H_2O \checkmark)$ 2
 - (c) spectrum C
 spectrum C only shows absorption at 1700 cm⁻¹ for the C=O
 the other two spectra contain the OH group absorption at approx 3000 cm⁻¹

 1

[9]


6. acrylic acid 1 approx 1700 cm^{-1} (range 1650 - 1750) indicates C=O 1 approx 3000 cm^{-1} (range 2500 - 3300) indicates O-H 1 not $3230 - 3550 \text{ cm}^{-1}$

[3]


7. (a) (i) alkene ✓ 1
 alcohol/hydroxy/hydroxyl ✓ 1

[9]

- (b) (i) $I = \text{alkene \& II} = \text{alcohol... both are needed } \checkmark$
 - (ii) decolourised / colourless ✓ 1
 - (iii) **✓**

(iv) \mathbf{X} as shown below \checkmark

- (c) (i) Ni/Pt/Rh/Pd ✓ 1
 - (ii) compound **B** is $C_{10}H_{22}O$ \checkmark
 - (iii) $C_{10}H_{20}O + H_2 \rightarrow C_{10}H_{22}O \checkmark$
- **8.** (a) (i) Alkene/C=C ✓ 1
 - Alcohol/ROH/hydroxyl/OH (not OH or hydroxide) ✓ 1
 - (ii) One of the C in both C=C is joined to two atoms or groups that are the same ✓ 1
 - (b) Observation decolourisation (of Br_2) \checkmark 1
 - Molecular formula $C_{10}H_{18}OBr_4 \checkmark \checkmark$ 2

C₁₀H₁₈OBr₂ gets 1 mark

- (c) reagent CH₃COOH ✓
 - catalyst $H_2SO_4/H^+/HCl$ (aq) or dilute loses the mark \checkmark 1

(d)	(i)	$C_{10}H_{18}O + 2[O] \rightarrow C_{10}H_{16}O_2 + H_2O \checkmark \checkmark$	2	
		1 mark for H ₂ O and 1 mark for 2[O]		
	(ii)	The infra-red spectrum was of compound \mathbf{Y}		
		because absorption between 1680 − 1750 cm ⁻¹ indicates a C=O ✓	1	
		and the absence of a peak between $2500 - 3300 \text{ cm}^{-1}$ shows the absence		
		of the OH hydrogen bonded in a carboxylic acid ✓	1	
				[12]

J¤